SYDNEY TECHNICAL HIGH SCHOOL

YEAR 12

HSC ASSESSMENT TASK 3

JUNE 2006

MATHEMATICS EXTENSION 1

Time Allowed: 70 Minutes

Instructions:

- Write your name and class at the top of each page.
- All necessary working must be shown. Marks may be deducted for careless or badly arranged work
- Marks indicated are a guide only and may be varied if necessary.
- Start <u>each</u> question on a <u>new page</u>
- Standard integrals can be found on the last page.

Question 1	Question 2	Question 3	Question 4	Question 5	Question 6	Total
/10	/10	/10	/10	/10	/12	/62

Question 1

- (a) Find the exact value of $\tan^{-1}\left(-\frac{1}{\sqrt{3}}\right)$
- (b) Differentiate the following

i.
$$y = e^{x^2}$$

ii.
$$y = \sin^{-1} 3x$$

iii.
$$y = \log_e \frac{x^2}{x - 1}$$

(c) Simplify
$$\log_a x^3 \div \log_a \sqrt{x}$$

(d) Find the general solution of
$$2\cos x = -1$$

Question 2 (Begin on the next page)

(a) Find i
$$\int \frac{x}{x^2 + 1} dx$$

ii
$$\int 2x^2 e^{x^3} dx$$

(b) Find k if
$$x^{k+3} = e^{7 \ln x}$$
 where $x > 0$

(c) Consider
$$f(x) = \sin^{-1}(2x+1)$$

i. Find the domain of
$$y = f(x)$$

ii. Find the inverse function
$$y = f^{-1}(x)$$

iii. State the domain and range of
$$y = f^{-1}(x)$$

iv. Sketch
$$y = f^{-1}(x)$$
 1

Question 3 (Begin on the next page)

- (a) Consider the function $y = x \ln x$ where x > 0.
 - i. Find the stationary point and determine its nature.
 - ii. Show that the curve is always concave upwards.

2

2

4

- iii. Find $\lim_{x\to 0} x \ln x$.
- iv. Where does the curve cut the x axis?
- v. Sketch the curve showing all important features. 2

(b) Find
$$\int \frac{dx}{\sqrt{16-25x^2}}$$
.

Question 4 (Begin on the next page)

(a) During the early summer months the rate of increase of the population, *P*, of fruit flies is proportional to the excess of the population over 3000

so
$$\frac{dP}{dt} = k(P - 3000)$$
 where t is in months and k is a constant.

At the beginning of summer the population is 4000 and 1 month later it is 10 000.

- i. Show that $P = 3000 + Ae^{kt}$ is a solution of the differential equation, 1 where A is a constant.
- ii. Find the value of A and the exact value of k.
- iii Find to the nearest 100, the population after $2\frac{1}{2}$ months.
- iv. After how many weeks does the population reach ½ million?
- (b) A spherical balloon is being inflated and its volume increases at the constant rate of 50 mm³ per second.

At what rate is its surface area increasing when the radius is 20mm?

Question 5 (Begin on the next page)

(a) i. Show that
$$\int_{0}^{\frac{\pi}{4}} \cos^2 \theta \, d\theta = \frac{\pi + 2}{8}.$$

ii. Hence, using the substitution
$$x = 2\sin\theta$$
 or otherwise, evaluate $\int_0^{\sqrt{2}} \sqrt{4 - x^2} dx$

(b) Use the substitution
$$x = u^2, u > 0$$
 to find the exact value of
$$\int_{1}^{3} \frac{1}{(x+1)\sqrt{x}} dx$$

Question 6 (Begin on the next page)

i. Solve the equation
$$x^4+x^2-1=0$$
, giving answers correct to two decimal places.

ii. On the same axes, draw the graphs of
$$y = \tan^{-1}x$$
 and $y = \cos^{-1}x$, 2 showing all important features. Mark the point P where the curves intersect.

iii Let
$$tan^{-1}x = \alpha$$
. Find an expression for $cos \alpha$ in terms of x.

iv. Show that, if
$$\tan^{-1}x = \cos^{-1}x$$
 then $x^4 + x^2 - 1 = 0$.

vi. Find the area enclosed by the curves and the y axis from

$$y = \frac{\pi}{2}$$
 to $y = 0$

STANDARD INTEGRALS

$$\int x^n dx = \frac{1}{n+1} x^{n+1}, \quad n \neq -1; \quad x \neq 0, \text{ if } n < 0$$

$$\int \frac{1}{x} dx = \ln x, \quad x > 0$$

$$\int e^{ax} dx = \frac{1}{a} e^{ax}, \quad a \neq 0$$

$$\int \cos ax dx = \frac{1}{a} \sin ax, \quad a \neq 0$$

$$\int \sin ax dx = -\frac{1}{a} \cos ax, \quad a \neq 0$$

$$\int \sec^2 ax dx = \frac{1}{a} \tan ax, \quad a \neq 0$$

$$\int \sec ax \tan ax dx = \frac{1}{a} \sec ax, \quad a \neq 0$$

$$\int \frac{1}{a^2 + x^2} dx = \frac{1}{a} \tan^{-1} \frac{x}{a}, \quad a \neq 0$$

$$\int \frac{1}{\sqrt{a^2 - x^2}} dx = \sin^{-1} \frac{x}{a}, \quad a > 0, \quad -a < x < a$$

$$\int \frac{1}{\sqrt{x^2 - a^2}} dx = \ln \left(x + \sqrt{x^2 - a^2} \right), \quad x > a > 0$$

$$\int \frac{1}{\sqrt{x^2 - a^2}} dx = \ln \left(x + \sqrt{x^2 + a^2} \right)$$

NOTE: $\ln x = \log_e x$, x > 0

Question 1

(a)
$$\tan^{-1}\left(\frac{-\frac{1}{13}}{13}\right) = -\tan^{-1}\frac{1}{13}$$

= $-\frac{11}{6}$

(b) i.
$$\frac{dy}{dx} = \frac{2xe^{x^2}}{}$$

ii.
$$\frac{dy}{dx} = \frac{3}{\sqrt{1-9x^2}}$$

iii.
$$y = \log_e x^2 - \log_e (x-i)$$

$$y = 2 \log_e x - \log_e (x-i)$$

$$\frac{dy}{dx} = \frac{2}{x} - \frac{1}{x-i}$$

(c)
$$\frac{3 \log_a x}{\frac{1}{2} \log_a x} = \frac{6}{2}$$

(d)
$$\cos x = -\frac{1}{2}$$

$$x = 2n\pi \pm \frac{2\pi}{3}$$
 where n is an integer

Question 2

(a) i.
$$\frac{1}{2} \int \frac{2x}{x^2 + 1} dx = \frac{\frac{1}{2} \ln(x^2 + 1) + c}{x^3}$$

ii. $\frac{2}{3} \int 3x^2 e^{x^3} dx = \frac{2}{3} e^{x^3} + c$

(b)
$$x^{k+3} = e^{7 \ln x}$$

 $x^{k+3} = e^{\ln x^7}$

(c)
$$f(x) = \sin^{-1}(2x+1)$$

$$i. -1 \le 2x + 1 \le 1$$
$$-2 \le 2x \le 0$$

ii.
$$x = \sin^{-1}(2y+1)$$

 $\sin x = 2y+1$

$$\therefore y = \frac{1}{2} (\sin x - 1)$$

iii.
$$D: -\frac{\pi}{2} \leq x \leq \frac{\pi}{2}$$

$$R: -1 \le y \le 0$$

Question 3

(a)
$$y = x \ln x$$

i.
$$\frac{dy}{dx} = x \cdot \frac{1}{x} + \ln x \cdot 1$$

$$= 1 + \ln x$$

Stat pts:
$$\frac{dy}{dx} = 0$$

$$0 = 1 + \ln x$$

$$x = \frac{1}{e}$$
, $y = -\frac{1}{e}$

· /1 -1 \

$$\frac{d^2y}{dx^2} = \frac{1}{x}$$

ii.
$$\frac{d^2y}{dx^2} = \frac{1}{x} > 0$$
 for all $x > 0$

... the curve is always concave up

iii.
$$\lim_{x\to 0} x \ln x = 0$$

$$V. \xrightarrow{\frac{1}{e}} \stackrel{1}{\stackrel{1}{e}} 1 \xrightarrow{\chi} \chi$$

(b)
$$\int \frac{dx}{\sqrt{16-25x^2}} = \int \frac{dx}{\sqrt{25(\frac{16}{25}-x^2)}}$$

$$= \frac{1}{5} \int \sqrt{\frac{16}{25}-x^2}$$

$$= \frac{1}{5} \sin^{-1} \frac{x}{4/5} + C$$

$$= \frac{1}{5} \sin^{-1} \frac{5x}{4} + C$$

Question 4

(a) i.
$$P = 3000 + Ae^{kt}$$

$$\frac{dP}{dt} = kAe^{kt}$$

$$= k(P-3000)$$
since $P = 3000 + Ae^{kt}$

ii. when
$$t=0$$
, $P = 4000$
 $4000 = 3000 + Ae^{0}$
 $\therefore A = 1000$

when
$$t=1$$
, $P=10\ 000$
 $10\ 000 = 3000 + 1000e^{k}$
 $7000 = 1000e^{k}$
 $e^{k} = 7$
 $\therefore k = \ln 7$

iii. when
$$t = 2.5$$
, $p = ?$

$$p = 3000 + 1000e^{4.7 \times 2.5}$$

$$= 132 641 \cdot 8..$$

$$= 132 600$$

ir.
$$P = 500\ 000$$
, $t = ?$
 $500\ 000 = 3000 + 1000e$
 $497\ 000 = 1000e^{(\ln 7)t}$
 $497 = e^{(\ln 7)t}$
 $t = \frac{\ln 497}{\ln 7}$
 $t = 3.19\ \text{months}$
 $\approx 13\ \text{weeks}$

(b)
$$V = \frac{4}{3}\pi r^3$$

 $S = 4\pi r^2$
 $\frac{dV}{dt} = \frac{dV}{dr} \times \frac{dr}{dt}$
 $= 4\pi r^2 \frac{dr}{dt}$
 $50 = 4\pi \times 20^2 \times \frac{dr}{dt}$
 $\frac{dr}{dt} = \frac{5}{160\pi}$
 $\frac{dS}{dt} = \frac{dS}{dr} \times \frac{dr}{dt}$
 $= 8\pi r \times \frac{dr}{dt}$

8TF ~ 20

a) i.
$$\int_{0}^{\frac{\pi}{4}} \cos^{2}\theta \ d\theta$$
 $\cos^{2}\theta = 2 \cos^{2}\theta - 1$
 $= \frac{1}{2} \int_{0}^{\frac{\pi}{4}} \cos^{2}\theta + 1 \ d\theta$
 $= \frac{1}{2} \left[\frac{1}{2} \sin^{2}\theta + \theta \right]_{0}^{\frac{\pi}{4}}$
 $= \frac{1}{2} \left[\left(\frac{1}{2} \sin^{2}\theta + \frac{\pi}{4} \right) - \left(\frac{1}{2} \sin^{0}\theta + 0 \right) \right]$
 $= \frac{1}{2} \left[\frac{\pi}{4} + \frac{1}{2} \right]$
 $= \frac{\pi + 2}{8}$

ii.
$$\int_{0}^{\sqrt{2}} \sqrt{4-x^{2}} dx$$

$$= \int_{0}^{\frac{\pi}{4}} \sqrt{4-4\sin^{2}\theta} \times 2\cos\theta d\theta$$

$$= \int_{0}^{\frac{\pi}{4}} \sqrt{4\cos^{2}\theta} \times 2\cos\theta d\theta$$

$$= \int_{0}^{\frac{\pi}{4}} \sqrt{4\cos^{2}\theta} \times 2\cos\theta d\theta$$

$$= 4\int_{0}^{\frac{\pi}{4}} \cos^{2}\theta d\theta$$

$$= 4 \times \frac{\pi+2}{8}$$

$$= \frac{\pi+2}{2}$$

(b)
$$\int_{1}^{3} \frac{1}{(1+x)\sqrt{x}} dx$$

$$= \int_{1}^{\sqrt{3}} \frac{1}{(1+u^{2})u} \times 2u du$$

$$= 2 \int_{1}^{\sqrt{3}} \frac{1}{1+u^{2}} du$$

$$= 2 \left[\tan^{-1} u \right]_{1}^{\sqrt{3}}$$

$$= 2 \left[\tan^{-1} \sqrt{3} - \tan^{-1} 1 \right]$$

$$= 2 \left[\frac{11}{3} - \frac{11}{4} \right]$$

$$x = 2 \sin \theta$$

$$\frac{dx}{d\theta} = 2 \cos \theta$$

$$\frac{dx}{d\theta} = 2 \cos \theta d\theta$$

$$x = \sqrt{2} : \sqrt{2} = 2 \sin \theta$$

$$\frac{1}{\sqrt{2}} = \sin \theta$$

$$\theta = \frac{\pi}{4}$$

$$x = 0 : \theta = 2 \sin \theta$$

$$\theta = 0$$

$$x = u^{2}$$

$$\frac{dx}{du} = 2u$$

$$dx = 2u du$$

$$x = 3 : 3 = u^{2}$$

$$u = \sqrt{3}$$

$$x = 1 : 1 = u^{2}$$

$$u = 1$$

Question 6
i.
$$x^4 + x^2 - 1 = 0$$

let $x^2 = a$
 $a^2 + a - 1 = 0$
 $a = -1 \pm \sqrt{1^2 - 4 \cdot 1 \cdot -1}$
 $x^2 = -1 \pm \sqrt{5}$
 $x = \pm 0.79$

iii. let
$$tan^{-1}x = \alpha$$

$$tan \alpha = x$$

$$\therefore \cos \alpha = \sqrt{1+x^2}$$

iv. If
$$\tan^{-1}x = \cos^{-1}x$$

 $\cos^{-1}x = \alpha$
 $\cos \alpha = x$

$$\frac{1}{\sqrt{1+x^2}} = x^2$$

v.
$$P(0.79, 0.67)$$

vi. $y = \tan^{-1} x$
 $x = \tan y$
 $y = \cos^{-1} x$
 $x = \cos y$
 $A = \int_{0.67}^{\frac{\pi}{2}} \cos y \, dy$
 $\int_{0.67}^{\frac{\pi}{2}} \cos y \, dy + \int_{0}^{0.67} \frac{\sin y}{\cos y} \, dy$
 $= \left[\sin y \right]_{0.67}^{\frac{\pi}{2}} + \left[-\ln(\cos y) \right]_{0}^{0.67}$
 $= \left[\sin \frac{\pi}{2} - \sin 0.67 \right] + \left[-\ln(\cos 0.67) - (-\ln(\cos 0)) \right]$
 $= 0.62 \quad (2 dp)$